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and thus further improve the very short-term forecasts.

Severe convective systems can lead to hail, heavy rain, gale-force wind gusts, lightning, and flash floods. Hence, forecasting them accurately is crucial. But nu-
merical weather prediction models face difficulties in predicting the exact position and strength of these systems. As a consequence, thunderstorm nowcasting in
the first few hours is mostly based on current observations. Today’s nowcasting systems primarily rely on a series of threshold tests. We plan to additionally ex-
ploit the potential of machine learning techniques to automatically extract information on the typical development of thunderstorms from a multi-sensor database

Satellite-based rainfall retrival

Methodology
Data

June - August 2017: Training (800 time slots), validation (400), and test set (400)
Ground Truth
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Precip detection: logistic regression (logreg), SVM

Rain rate: linear regression (+ probability matching)

Case study: 12 UTC 09 July 2017
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Thunderstorm nowcasting
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Left: precip detection; Right: rain rate on the predicted precip region in mm h;

Legend: nr: no radar, ntr: not trusted radar, tr: trusted radar, p: precip, np: no precip, snp/hnp: satellite /
hsaf predicted no precip, sp/hp: satellite / hsaf predicted precip, cp: correct predicted precip, fp: false pre-
dicted precip, cnp (ivory): correct predicted NO precip, 1p: false predicted NO precip
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Scores for the test set (ts) and the case study above (cs); Left: precip detection, circles = 0.8 mio rand-
om cloudy pixels (balanced) scores; Right: rain rate retrieval, circles = 0.4 mio random rainy pixels
scores; Both: crosses = case study scores, stars = optimal scores, black horizontal line = 0 skill line
POD = Probatity of Detection, FA = Fase Alarm Rate, FAR = Fase Alarm Ratio, ACC = Accuracy, CS1 = Threat Score, POR = Probabiy of Rejection, FRR= Faise Rejecton Rati, HSS = Heidke Skl Score,
HK= Gss - SEDI-
5. ad = Adivo Bias, B_mtt - Multplicativo Bias MAE = Moan Absoluts 110, RMSE = Root Wean Sauarod Exor, dabi_ RMSE =
béta = Linear Regression Sope, RV = Reduction of Variance

High case-to-case variability in performance of the algorithm
Many scores strongly dependent on test set distribution -> which one to optimize?

Conclusions

Precip detection
Very satisfactory results with logistic regression
SVM slightly inferior performance + much larger computational time (not shown)
Rain rate
Difficult task
Ground truth from different instrument

Squared Error, o = Li

Instantaneous rain rates highly skewed
Predictions close to mean favored: prob. matching? i

the area trend the error in km
for various lead

times

Rainfall retrieval

Test potential of Artificial Neural Networks (+ possibly other
machine learning algorithms) for rainfall retrieval
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Thunderstorm nowcasting

Create thunderstorm data set in Lagrangian coordinates
with variables used so far + include radar, NWP, and light-
ning information

Employ machine learning methods to nowcast thunder-
storm evolution

Satellie

Develop real-time, multi-sensor, seamless, quantitative,
end-to-end, localized, robust, and customer-oriented prod-
ucts
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Further information:
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