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Satellite-based rainfall retrival 

Case study: 12 UTC 09 July 2017 

Methodology 

Verification 

Conclusions  

Fraction of time 
during which 
radar product is 
available and 
rain rate 
>= 0.3 mm h-1 

Data  • June - August 2017: Training (800 time slots), validation (400), and test set (400) 

Precip detection  • Very satisfactory results with logistic regression • SVM slightly inferior performance + much larger computational time (not shown) 
Rain rate  • Difficult task • Ground truth from different instrument • Instantaneous rain rates highly skewed • Predictions close to mean favored: prob. matching? 

Ground Truth • Quality-controlled Odyssey radar composite rain rates  
Input Features • MSG SEVIRI IR 

channels + diffe-
rences • NWCSAF products • Local solar time, 
coordinates, topo-
graphy, land-sea 
mask, satellite vie-
wing geometry 

Model • Precip detection: logistic regression (logreg), SVM • Rain rate: linear regression (+ probability matching) 

Performance compared to • HSAF precip product 

Left: precip detection; Right: rain rate on the predicted precip region in mm h-1; 
Legend: nr: no radar, ntr: not trusted radar, tr: trusted radar, p: precip, np: no precip, snp/hnp: satellite / 
hsaf predicted no precip, sp/hp: satellite / hsaf predicted precip, cp: correct predicted precip, fp: false pre-
dicted precip, cnp (ivory): correct predicted NO precip, fnp: false predicted NO precip 

Precip detection • Logreg: hardly 
any misses, many 
false alarms • HSAF: more mis-
ses, fewer false 
alarms 

Rain rate • Linreg: mostly 
predict low values 
close to mean • HSAF: overesti-
mation over large 
areas • Both: fine-scale 
structure of radar 
is not captured 

Scores for the test set (ts) and the case study above (cs); Left: precip detection, circles = 0.8 mio rand-
om cloudy pixels (balanced) scores; Right: rain rate retrieval, circles = 0.4 mio random rainy pixels 
scores; Both: crosses = case study scores, stars = optimal scores, black horizontal line = 0 skill line 
 

POD = Probability of Detection, FA = False Alarm Rate, FAR = False Alarm Ratio, ACC = Accuracy, CSI = Threat Score, POR = Probability of Rejection, FRR= False Rejection Ratio, HSS = Heidke Skill Score, 
HK = Hanssen-Kuipers Discriminant, GSS = Gilbert Skill Score, SEDI = Symmetric Extremal Dependence Index 
B_ad = Additive Bias, B_mult = Multiplicative Bias, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error, debi_RMSE = Debiased Root Mean Squared Error, rho = Linear Correlation Coefficient,  
beta = Linear Regression Slope, RV = Reduction of Variance • High case-to-case variability in performance of the algorithm • Many scores strongly dependent on test set distribution -> which one to optimize? 

 Thunderstorm nowcasting 

COALITION-2 product suit  

COALITION-2 algorithm  

Nowcasting of thunderstorm position and properties 

Available Products  
From upper left to  
lower right:  • COALITION-2  • NWCSAF  

cloud type • High resolution 
overview  • TRT cell rank • Precip rate • Lightning rate 

Threshold test  for «convec�ve ini�a�on» Category WV6.2µm – IR10.8µm Cloud depth WV6.2µm – WV7.3µm Cloud depth IR10.8µm Cloud depth WV7.3µm – IR13.4µm Cloud depth IR6.2µm – IR9.7µm Cloud depth IR8.7µm + IR12.0µm – 2xIR10.8µm Glacia"on indicator IR8.7µm – IR10.8µm Glacia"on indicator IR12.0µm – IR10.8µm Glacia"on indicator d(WV6.2µm – WV7.3µm) / 30min Updra) strength d(IR10.8µm) / 15min Updra) strength d(IR10.8µm) / 30min Updra) strength d(WV6.2µm – WV7.3µm) / 15min Updra) strength d(IR9.7µm – IR13.4µm) / 30min Updra) strength d(WV6.2µm – IR10.8µm) / 30min Updra) strength d(WV6.2µm – IR12.0µm) / 15min Updra) strength IR3.9µm – IR10.8µm Small ice crystals 

Cell-based thun-
derstorm now-
cast applying 
Lagrangian per-
sistence + linear 
extrapolation of 
the area trend 
for various lead 
times 

Verification of the fore-
casted cell position for 
cells with a history 
> 30 min for various 
lead times against the 
observed position with 
the error in km 

Severe convective systems can lead to hail, heavy rain, gale-force wind gusts, lightning, and flash floods. Hence, forecasting them accurately is crucial. But nu-
merical weather prediction models face difficulties in predicting the exact position and strength of these systems. As a consequence, thunderstorm nowcasting in 
the first few hours is mostly based on current observations. Today’s nowcasting systems primarily rely on a series of threshold tests. We plan to additionally ex-
ploit the potential of machine learning techniques to automatically extract information on the typical development of thunderstorms from a multi-sensor database 
and thus further improve the very short-term forecasts. 

Motivation Motivation 

 

Outlook 

Thunderstorm nowcasting 

• Create thunderstorm data set in Lagrangian coordinates 
with variables used so far + include radar, NWP, and light-
ning information 

• Employ machine learning methods to nowcast thunder-
storm evolution 

• Develop real-time, multi-sensor, seamless, quantitative, 
end-to-end, localized, robust, and customer-oriented prod-
ucts  

Rainfall retrieval 

• Test potential of Artificial Neural Networks (+ possibly other 
machine learning algorithms) for rainfall retrieval 

Outlook 
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