

Tracing the oxygen triple isotopic composition of tropospheric molecular oxygen in biogenic apatite – a new tool for palaeoclimatology

A. Pack, A. Süssenberger, A. Gehler, and J. Wotzlaw

Universität Göttingen, Geowissenschaftliches Zentrum, Göttingen, Germany (apack@uni-goettingen.de)

It has been demonstrated that tropospheric molecular oxygen posses a significant isotope anomaly [1, 2 and refs. therein]. Relative to the rocks- and minerals-defined terrestrial fractionation line (TFL), tropospheric O₂ has an anomaly of $-0.35\text{\textperthousand}$ [2]. Because almost all oxygen on Earth is contained in rocks, we suggest that the rocks- and minerals-defined TFL [3] should be used as reference when reporting isotope anomalies with $\Delta^{17}\text{O} = 17\text{OSMOW} - \text{TFL } 18\text{OSMOW}$. We have developed a new technique for the determination of ¹⁷O and ¹⁸O of silicates by means of laser fluorination GC-CF-irmMS. We have determined TFL to 0.5247 (N > 100), which is identical to the value reported by other laboratories and techniques [2, 3]. The uncertainty in $\Delta^{17}\text{O}$ is ± 0.03 (1) for a single analysis. It was suggested that $\Delta^{17}\text{O}$ of tropospheric O₂ can be used as proxy for the global bioactivity rate [GBR, 1] as well as for past atmospheric CO₂ concentrations [4]. Past $\Delta^{17}\text{O}$ of tropospheric O₂ can be determined by analyzing O₂ trapped in ice [1, 5] or by analyzing sulfates from terrestrial sulphide oxidation [4]. Disadvantage of ice core data is the limitation in time back <1 Myrs. The sulfate approach is used to trace $\Delta^{17}\text{O}$ of air O₂ back to Proterozoic times. Disadvantage of this technique is the uncertainty in the proportion of oxygen from O₂ and oxygen from ambient water during oxidation of the sulphides.

We suggest that oxygen from tooth and bone phosphate can be used as proxy for the $\Delta^{17}\text{O}$ of air O₂. Mass balance calculations [e.g. 6] suggest that a considerable portion of oxygen in biogenic apatite sources from respired air O₂. We have analyzed tooth (enamel, dentine) and bone material by means of direct fluorination for their ¹⁷O and ¹⁸O. We have chosen material of mammals of different body mass (Mb) from Northern Germany (except Indian Elephant). The $\Delta^{17}\text{O}$ of apatite varies between $-0.16\text{\textperthousand}$ for a wood mouse (*Apodemus sylvaticus*) and $+0.04\text{\textperthousand}$ for a wild boar (*Sus scrofa*). Samples were analyzed between 5 and 7 times in order to reduce the analytical uncertainty to $\pm 0.012\text{--}0.025\text{\textperthousand}$.

Our data confirm the prediction from mass balance that animals inherit a $\Delta^{17}\text{O}$ signature from anomalous air O₂. We have developed a detailed mass balance for mammals with respect to $\Delta^{17}\text{O}$. The mass balance considers the oxygen fluxes (drinking and food water, respired O₂, metabolic water, excrements, evaporated water and exhaled CO₂). The fractionation in ¹⁸O and $\Delta^{17}\text{O}$ (from associated -value) was considered for each of the fluxes. The result is an allometric scaling model for $\Delta^{17}\text{O}$ as function of log Mb. Predicted and measured data agree within the uncertainty of the model and the measurements, respectively. Small mammals with their high specific metabolic rate show the greatest portion of oxygen from air O₂ in their body water and in their bones and teeth. With this approach, $\Delta^{17}\text{O}$ of air O₂ can be determined with an uncertainty in the range of 0.05–0.1%. This is more precise than what can be obtained from analyses of terrigene sulfate. With well-preserved fossil material, it may be possible to determine $\Delta^{17}\text{O}$ of air O₂ beyond the time limit of ice core data. The high precision of our approach may allow identifying variations in $\Delta^{17}\text{O}$ of air O₂ between glacial and interglacial periods.

With mammal material, we will construct a $\Delta^{17}\text{O}$ -profile of tropospheric O₂ back to the Palaeogene. Using the same approach with reptile apatite, we expect to be able to extend the database beyond the Cretaceous/Palaeogene boundary.

Correct interpretation of $\Delta^{17}\text{O}$ of biogenic apatite, however, requires knowledge of the metabolic parameters for the analyzed groups as well as the -values for all isotope fractionation processes involved.

[1] Luz B. et al. (1999) *Nature*, 400, 547-550.

[2] Pack A. et al. (2007) *Rapid Communications in Mass Spectrometry*, 21, 3721-3728.

[3] Rumble D. et al. (2007) *Geochimica et Cosmochimica Acta*, 71, 3592-3600.

[4] Bao H. et al. (2008) *Nature*, 453, 504-506.

[5] Blunier T. et al. (2002) Global Biogeochemical Cycles, 16, 3-1-15.

[6] Bryant J. D. and Froelich P. N. (1995) *Geochimica et Cosmochimica Acta*, 59, 4523-4537.