

Modelling of the radon exhalation from water to air by a hybrid electrical circuit for earthquake prediction

A. Negarestani (1), H. Hashemipoor Rafsenjani (2), H. Noori (2), M. Shahpasandzadeh (1), F. Naseri (1), and H. Montazari (2)

(1) International Center of Science, High Technology & Environmental Sciences (ICST), Mahan, Iran,
 (alinegarestani@yahoo.com)- Fax: +98-3426226617, (2) Shahid Bahonar University of Kerman. Kerman, Iran,
 hashemipur@yahoo.com

To better understand the mechanism of Radon exhalation from liquid to air, a hybrid electrical circuit model has been introduced. Differential equations expressing changes in radon concentration in the gas and liquid phases can be written as

$$V_g \frac{dC_g}{dt} = -\lambda V_g C_g + F \quad (1)$$

$$V_l \frac{dC_l}{dt} = -\lambda V_l C_l + Q(C_0 - C_l) - F \quad (2)$$

Where V_g and C_g are volume and radon concentration in the gas phase, V_l and C_l are those in the liquid phase, C_0 is the original radon concentration in the groundwater before degassing, λ is the decay constant of Radon, F is the degassing flux of radon from liquid phase to gas phase and Q is the flow rate of the groundwater.

The degassing flux of radon from liquid phase to gas phase can be written as

$$F = K_{tot}(C_l - \frac{C_g}{H})S \quad (3)$$

Where K_{tot} is the total gas transfer velocity (m/s), S is the area of the boundary between liquid and gas phase and H is the Henry's law constant ($H = C_g / C_l$ in an equilibrium state).

The component of K_{tot} are the overall diffusive gas transfer velocity, K_{ol} , and the bubble mediated gas transfer velocity, K_b .

$$K_{tot} = K_{ol} + K_b \quad (4)$$

Where

$$\frac{1}{K_{ol}} = \frac{1}{K_w} + \frac{1}{K_a H} \quad (3)$$

Where K_w is the transfer velocity in the water(m/s) and K_a is the transfer velocity in the air (m/s)

$$K_w = \frac{D_w}{Z_w} \quad (4)$$

Where D_w is the chemical molecular diffusion coefficient in water (at temperature of the water)(m²/s) and Z_w is the thickness of the stagnant water film (m) .

$$K_a = \frac{D_a}{Z_a} \quad (5)$$

Where D_a is the chemical molecular diffusion coefficient in air (at temperature of the air)(m²/s) and Z_a is the thickness of the stagnant air film (m). We solved these coupled equations (1 and 2), using the finite element method for an actual system. Elaborating an active radon detector (RAD7), we measured the radon exhalation from liquid to a closed loop of air.

With comparing the results of the introduced model with the actual data for a proposed setup in the ICST lab, our model demonstrates the variation of the radon concentration efficiently. This model has significant applications in monitoring radon behavior in different geohazard disciplines including earthquake prediction and human health.