Bifurcation analysis of geophysical time series

V. Livina (1), F. Kwasniok (2), and T. Lenton (1)
(1) University of East Anglia, School of Environmental Sciences, Norwich, United Kingdom (v.livina@uea.ac.uk), (2) School of Engineering, Computing and Mathematics, University of Exeter, Exeter, United Kingdom

We propose a general synthetic framework, combining analytical and experimental techniques, for studying climatic bifurcations and transitions by means of the time series analysis. The method employs three major techniques: (i) derivation of potential from time series using unscented Kalman Filter (UKF); (ii) studying possible bifurcations and transitions of the obtained potential; (iii) projection of the time series according to the estimated perturbation. The method is tested on artificial data and then applied to observed records, in particular, a Greenland temperature proxy.

We correctly detect potential changes in artificial series with a varied number of potential wells. In the case of Greenland data, the technique detects a change of the number of system states from two to one (double-well potential transforming into single-well) at about 20 kyr BP.