Simulation Study on Tsunami Detection from Space Using GNSS-R

R. Stosius (1), G. Beyerle (1), A. Helm (2), A. Höchner (1), and M. Rothacher (3)
(1) GFZ German Research Centre for Geosciences, GPS/GALILEO Technologies, 14473 Potsdam, Germany
(rstosius@gfz-potsdam.de, +49 331 201 1150), (2) EADS/Astrium Space Transportation, 88090 Immenstaad, Germany, (3)
ETH Zürich, Institute for Geodesy and Photogrammetry, 8093 Zürich, Switzerland

The Sumatra earthquake of December 2004 was the second largest earthquake ever recorded by instruments and
the following tsunami took more than 200,000 lives. The German Federal Ministry of Education and Research
(BMBF) commissioned the Helmholtz Association of National Research Centres (HGF) directly after the disaster
with developing the German Indonesian tsunami early warning system (GITEWS) for the Indian Ocean. While
this early warning system is being established concept studies and new technology developments using Global
Navigation Satellite System reflectometry (GNSS-R) for tsunami detection from space have been initiated. This
technique uses ocean reflected GNSS signals for sea surface altimetry. With a Low Earth Orbit (LEO) constellation
of small satellites equipped with multi-frequency GNSS receivers densely spaced grids of sea surface heights
could be established to detect tsunami waves within minutes. The simulation study analyzes the performance of
various LEO satellite constellation scenarios with respect to tsunami detection time for two different tsunami
events and with different GNSS-R concepts. Therefore, a reflection point calculation is combined with a tsunami
wave propagation model. Different orbit heights, orbit inclinations and numbers of satellites are investigated. GPS,
GLONASS and Galileo signals are used as signal source. The impact of signal elevation angle and altimetric
accuracy on the detection performance is evaluated. It can be shown that only a large number of LEO satellites can
monitor the sea surface with sufficient high resolution in space and time when a detection time of 5 to 15 minutes
is needed.