Stable isotope and microbial analyses of methane-producing process in a geothermal aquifer associated with the subsurface of the accretionary prism, Japan

(1) Tokyo Institute of Technology, Kanagawa, Japan, (2) Shizuoka University, Shizuoka, Japan, (3) Tokyo University of Agriculture and Technology, Tokyo, Japan

The sedimentary layer in the southern part of Japan is accretionary prism which includes enriched organic materials derived from sediment on oceanic plate. There is geothermal aquifer in which a large amount of methane (CH$_4$) dissolved. Since CH$_4$ is important as a greenhouse gas and an important natural gas fuel, revealing CH$_4$-producing process in subsurface environment is required. To understand the process of the CH$_4$ production, we collected the groundwater from the aquifer of 1,189-1,489 m depth, and analyzed by using stable isotope and microbial analyses.

16S rRNA gene analysis showed a dominancy of hydrogenotrophic methanogens in domain *Archaea* and a dominancy of anaerobic heterotrophes to be known to produce H$_2$ and CO$_2$ by fermentation process in domain *Bacteria*. The anaerobic enrichment cultures with the groundwater amended with organic substrates showed that CH$_4$ was produced by co-culture between the fermenters and hydrogenotrophic methanogens. On the other hand, conventional isotopic estimations for the origin of CH$_4$ using δ^{13}C-CH$_4$ and δD-CH$_4$ as well as δ^{13}C-CO$_2$ and molecular ratio of $C_1/(C_2+C_3)$ indicated that CH$_4$ was derived from thermogenic pathway. The values of δ^{13}C-CO$_2$, however, had higher values and carbon isotope fractionation factors between CH$_4$ and CO$_2$ ($\alpha(CO_2-CH_4)$) were approximately 1.05 to 1.06 indicating the possibility of biogenic CH$_4$ production. Therefore, the origin of CH$_4$ production was estimated as mixing both thermogenic and CO$_2$ reduction from isotopic data.

Furthermore, we incubated these enriched co-cultures and measure stable carbon isotope ratios of CH$_4$ and CO$_2$ and stable hydrogen isotope ratios of H$_2$O and CH$_4$. We revealed that concentration of H$_2$ were kept lower by these co-cultures between fermenters and hydrogenotrophic methanogens and $\alpha(CO_2-CH_4)$ values were higher than that of cultures with the ground water amended with high concentration of H$_2$+CO$_2$. Hydrogen isotope fractionation factor between H$_2$O and CH$_4$ by these co-culture increased (α_H values decreased) with increasing H$_2$ concentration.