

The isotopic composition of formaldehyde in urban air

A. Rice (1) and P. Quay (2)

(1) Department of Physics, Portland State University, Portland, OR 97207-0751 (arice@pdx.edu), (2) Department of Oceanography, University of Washington, Seattle, Washington, 98195 (quay@ocean.washington.edu)

The isotopic composition of atmospheric formaldehyde was measured in air samples collected in urban Seattle, Washington. A recently developed gas chromatography-isotope ratio mass spectrometry analytical technique was used to extract formaldehyde directly from whole air, separate it from other volatile organic compounds, and measure its $^{13}\text{C}/^{12}\text{C}$ and D/H ratio. Measurements of formaldehyde concentration were also made concomitant with isotope ratio. Results of the analysis of nine discrete air samples for $\delta^{13}\text{C}-\text{HCHO}$ have a relatively small range in isotopic composition (-31 to $-25\text{\textperthousand}$ versus VPDB) over a considerable range of concentrations (0.8–4.4 ppb). In contrast, analyses of 17 air samples for $\delta\text{D}-\text{HCHO}$ show a large range (-296 to $+210\text{\textperthousand}$ versus VSMOW) over the concentrations measured (0.5–2.9 ppb). Observations of δD are weakly anti-correlated with concentration. Isotopic data are interpreted using both source and sink-based approaches. Results of $\delta^{13}\text{C}-\text{HCHO}$ are similar to those observed previously for a number of non-methane hydrocarbons in urban environments and variability can be reconciled with a simple sink-based model. The large variability observed in $\delta\text{D}-\text{HCHO}$ favors a source-based interpretation with values depleted in deuterium from primary sources of HCHO (i.e., combustion) and values enriched in deuterium from secondary photochemical sources (i.e., hydrocarbon oxidation).