Extraction of arsenic in a soil of the blackfoot disease endemic area with ionic liquids

C.-Y. Liao (1), H. Paul Wang (1,2), C.-Y. Peng (3), H.-Y. Kang (3), and Y.-L. Wei (4)
(1) Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan (wanghp@mail.ncku.edu.tw / +886 6 275 2790), (2) Sustainable Environment Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan (wanghp@mail.ncku.edu.tw / +886 6 275 2790), (3) Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, USA (cypeng@u.washington.edu), (4) Department of Environmental Science and Engineering, Tunghai University, Taichung City 40704, Taiwan (yulin@thu.edu.tw)

Speciation of arsenic in the soil of the old blackfoot disease endemic area in the Southern Taiwan has been studied by X-ray absorption near edge structural (XANES) and extended X-ray absorption fine structural (EXAFS) spectroscopy. Experimentally, at the contact time of 30-180 min, 30-40% of As(III) and 40-60% of As(V) in the soil can be extracted with a room temperature ionic liquid (RTIL) [BMI][BF$_4$] (1-butyl-3-methylimidazolium tetrafluoroborate). For the relatively hydrophobic RTIL [BMI][PF$_6$] (1-butyl-3-methylimidazolium hexafluorophosphate), on the contrary, 10-15% of As(III) and 20-25% of As(V) can be extracted. By XANES, it is found that an enhanced oxidation of the extracted As(III) (As(III)\toAs(V)) in the RTIL may occur during the extraction processes. The refined EXAFS spectra also indicate that the bond distances of As(III)-N and As(V)-N in the arsenic-extracted RTILs are 1.76-1.78 and 1.68-1.70 Å, respectively.