Deuterium in tree rings: a low frequency climate proxy? - Hope for deuterium in tree rings?

S. Hangartner (1), A. Kress (2), M. Sauer (2), and M. Leuenberger (1)
(1) University of Bern, Physics Institute, Climate and Environmental Physics, Bern, Switzerland (shangart@climate.unibe.ch),
(2) Paul Scherrer Institut (PSI), Villigen, Switzerland

We measured stable hydrogen isotope ratios in α-cellulose from a millennial European larch ($Larix decidua$) chronology from a subalpine valley in Valais, Switzerland. The online equilibration method described in [1] was applied to measure the Deuterium/Hydrogen ratio (δD) of the non–exchangeable hydrogen. We compared the δD chronology to the results from $\delta^{18}O$ measurements of the same cellulose samples [2]. Although both hydrogen and oxygen share a highly similar long term trend, high frequency signals show low coherence. This results are in contrast to the mechanistic model by [3] who assumes a similar pathway for hydrogen and oxygen in woody plants from source water to cellulose synthesis. The comparison of our δD chronology to high resolution instrumental meteo data also leads to conflicting results. In this work we thus focused on low frequencies in δD to investigate the question whether deuterium in tree rings is a worthwhile climate proxy.

References