

Adaptation of terrestrial microbial communities to elevated CO₂ concentrations

M. Krüger, J. Frerichs, F. May, and I. Möller
BGR, Hannover, Germany (martin.krueger@bgr.de)

From the IPCC report on global warming, it is clear that large-scale solutions are needed immediately to reduce emissions of greenhouse gases. CO₂ capture and storage offers one option for reducing greenhouse gas emissions. Our study aims at investigating the environmental impact of CO₂ leakage from deep reservoirs into near-surface terrestrial environments. Therefore, an ecosystem study has been conducted on a natural CO₂ leak at the Laacher See, Germany. CO₂ is produced below this extinct volcanic caldera. The CO₂ releasing vent located on an agricultural field at the western shore of the lake is clearly visible due to a 5m wide core of exposed soil.

The determination of environmentally important microbial activities, eg. CO₂ and methane production, sulfate reduction and methane oxidation, showed differences between the CO₂-rich (>90 % of soil gas) medium (20%) and the control site with background CO₂ concentrations. Especially in deeper soil layers, rates of methane production and sulfate reduction increased with increasing CO₂ in the soil gas. Methane oxidation activity was highest at the control site. In accordance with the activities, also the microbial communities analysed by DGGE with general bacterial, archaeal and primers for functional genes of the C- and N-metabolism showed a shift in species composition between CO₂-rich and control sites. However, all results indicate that effects of the gas vent are spatially limited. The ecosystem appears to have adapted to the different conditions through species substitution or adaptation, showing a shift towards anaerobic and acidophilic species under elevated CO₂ concentrations.