

Observed and simulated global distribution and budget of atmospheric C₂-C₅ alkanes

Andrea Pozzer (1,2), Jan Pollmann (2), Domenico Taraborrelli (2), Patrick Joeckel (3), Detlev Helmig (4), Peter Tans (5), Jacques Hueber (4), Jos Lelieveld (1,2)

(1) The Cyprus Institute, EEWRC, Nicosia, Cyprus (pozzer@cyi.ac.cy, +357 22 208 625), (2) Air Chemistry Department, Max-Planck Institute of Chemistry, Mainz, Germany, (3) DLR, Institut fuer Physik der Atmosphaere, Oberpfaffenhofen, Germany, (4) Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, USA, (5) NOAA/ESRL, Boulder, USA

The primary sources and atmospheric chemistry of C₂-C₅ alkanes have been incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). Model output is compared with new observations from the NOAA/ESRL GMD cooperative air sampling network. Based on the global coverage of the data, two different anthropogenic emission datasets for C₄-C₅ alkanes, widely used in the modelling community, are evaluated. We show that the model reproduces the main atmospheric features of the C₂-C₅ alkanes (e.g., seasonality). While the simulated values of ethane and propane are within a 20% range of the measurements, larger deviations are found for the other tracers. Finally the effect of C₃-C₅ alkanes on the concentration of acetone and acetaldehyde are assessed. Their chemical sources are largely controlled by the reaction with OH, while the reactions with NO₃ and Cl contribute only to a little extent.