The period from the Last Interglacial to the Last Glacial Maximum (MIS 5 – 2) in different archives of southern Italy

Daniela Sauer (1), Stephen Wagner (2), Riyad Al-Sharif (1), Helmut Brückner (3), Fabio Scarciglia (4), Giuseppe Mastronuzzi (5), and Karl Stahr (1)

(1) Institute of Soil Science, Hohenheim University, D-70599 Stuttgart, Germany (d-sauer@uni-hohenheim.de), (2) Institute of Crop Science and Resource Conservation, Soil Science Division, University of Bonn, D-53115 Bonn, Germany , (3) Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, D-35032 Marburg, Germany, (4) Department of Earth Sciences, University of Calabria, Via P. Bucci Cubo 15B, I-87036 Arcavacata Di Rende, CS, Italy, (5) Department of Geology and Geophysics, University of Bari, Via E. Orabona 4, I-70125 Bari

Sediment cores from S Italy provide excellent archives of Late Pleistocene climate and vegetation changes, particularly from the Lago Grande di Monticchio (Allen et al., 2000; Brauer et al., 2007), the crater lakes of the central West coast of Italy, Valle di Castiglione, Lagaccione, Lago di Vico, Stracciaccapa (Follieri et al., 1998) and the marine core GNS84-C106 in the Gulf of Salerno (Di Donato et al., 2008). These records show that woody Mediterranean vegetation covered the region during most of the Last Interglacial (from 129-127 ka BP until 115-116 ka BP). In the last phase of the interglacial (from 115-116 ka BP until about 110 ka BP), the forest composition changed, showing an increase in Abies and Alnus and a decrease in Mediterranean taxa.

The interglacial was terminated by the Melisey I Stadial, during which grasses and Betula predominated. Forests spread again during St. Germain I, but they consisted mainly of Fagus, Abies and various deciduous trees. A steppe phase (Melisey II) followed, in which Chenopodiaceae prevailed, before St. Germain II set in, with forests dominated by Abies, Ulmus and Carpinus. From the end of St. Germain II until the Lateglacial, steppe, composed of Artemisia, Gramineae and Chenopodiaceae, predominated, with week expansions of trees (mainly Pinus and Juniperus) during several periods.

What information can be obtained from terrestrial geo-archives for the same region and time? Sea level highstands, corresponding to interglacial and interstadial periods, created marine terraces along the coasts of S Italy. We are currently carrying out a geomorphological, sedimentological and pedological study on a flight of 11 uplifted marine terraces in the central Gulf of Taranto, the lowermost of them falling into the time span of interest. The terraces generally comprise a gravel body, deposited in a littoral environment, covered by a layer of fine sediments of varying thickness. The latter were deposited when the terrace was still close to the sea level, in lagoonal to alluvial environments. There are only few age estimates available. Several shells from the lower terraces are currently being dated. A Calcic Luvisol developed on the terrace T1 (terminology according to Brückner, 1980), which is attributed to MIS 5.1. The next higher terraces T2 and T3 are characterised by progressive soil evolution, in particular increasing rubification and clay translocation. In some locations, loess accumulated on the terraces, as observed in the profile Petrulla on T1. According to OSL datings by Zander et al. (2006), the loess at this site accumulated between 24.9 ka BP and <16 ka BP, i.e. during the LGM. A yellowish-brown Calcic Luvisol developed in the loess. Thus, the soils reflect rather the interglacial soil formation in a Mediterranean environment than the glacial soil formation in a steppe environment.

References