

Air-sea CO₂, O₂ and N₂O fluxes in the Namibian Upwelling System: a modelling approach

Elodie GUTKNECHT, Isabelle DADOU, Gildas CAMBON, Joel SUDRE, and Veronique GARCON

Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (CNES/CNRS/UPS/IRD), 18 avenue Edouard Belin, 31401 Toulouse Cedex 9, France. (E. Gutknecht: Elodie.Gutknecht@legos.obs-mip.fr)

Uncertainties exist in our understanding of the biogeochemical cycles of nitrogen and carbon, two key cycles for climate regulation via both greenhouse gases N₂O and CO₂. The role of the Benguela Upwelling System as a nitrogen source for the open ocean, via the turbulent instabilities and filament structures enriched in chlorophyll, is still to be investigated. The loss of nitrogen by denitrification and/or anammox with CO₂, N₂O and H₂S gas emissions can also occur in this very productive zone in which dissolved oxygen concentrations may get very low.

A 3D coupled hydrodynamical (ROMS) and biogeochemical (BioBUS) model which takes into account these important processes is used in the Namibian Upwelling System, forced by climatological forcing. Air-sea gas fluxes are estimated based on Wanninkhof (1992)'s relationship for air-sea gas transfer velocity and QuickSCAT wind field. A significant evasion flux of CO₂ out of the ocean occurs all year round, in the upwelling region between 20°S and 26°S with a marked spatial heterogeneity. The period of strong upwelling can induce outgoing CO₂ fluxes up to 8.7 molCO₂ m⁻² yr⁻¹ along the coast, while during the weak upwelling period the CO₂ flux to the atmosphere remains close to 4.4 molCO₂ m⁻² yr⁻¹. The whole studied domain represents a net annual source of CO₂ for the atmosphere (3.5 molCO₂ m⁻² yr⁻¹). Modelled oxygen concentrations vary between 4.5 ml.l⁻¹ and 6 ml.l⁻¹ over a year in Walvis Bay (23°S – 14°E) at the surface, and between 1.5 ml.l⁻¹ and 3 ml.l⁻¹ at 100 m depth. These estimations are in agreement with observations at the Walvis Bay station (23°S – 14°E). An important air-sea O₂ flux to the ocean (up to 80 molO₂.m⁻².yr⁻¹) is observed close to the coast as compared to offshore values (~1 molO₂.m⁻².yr⁻¹). Due to denitrification on the continental shelf, the Walvis Bay area can potentially be a net source of N₂O for the atmosphere. N₂O concentrations are estimated from oxygen using different parameterisations. Our results show that the Walvis Bay area represents a net source of N₂O for the atmosphere.