

Automatic channel network extraction from lidar through nonlinear diffusion and geodesic paths

Paola Passalacqua and Efi Foufoula-Georgiou

National Center for Earth-Surface Dynamics and Dept. of Civil Engineering, Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, United States (passa018@umn.edu)

An advanced methodology for channel network extraction is developed and implemented on several high resolution data sets of different characteristics, from a steep and landslide-dissected basin, to a mountainous region, to a flat and partly artificially drained area. The methodology incorporates nonlinear diffusion for the pre-processing of the data, both to focus the analysis on the scales of interest and to enhance features that are critical to the channel extraction. Following this pre-processing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured based on fundamental geomorphological characteristics such as flow accumulation and iso-height contours curvature.

The results obtained show that the geometric nonlinear methodology is computationally efficient and able to achieve robust extraction of the channels.