Recent Advances in the Similarity Theory of the Stable Boundary Layer

Zbigniew Sorbjan (1,)
(1) (zbigniew.sorbjan@mu.edu), () Institute of Geophysics Polish Academy of Sciences

The gradient-based scaling for the stably stratified boundary layer is introduced and examined by using data collected during the SHEBA field program in the Arctic. The resulting similarity functions for fluxes and variances are expressed in an analytical form, which is practically unaffected by self-correlation. The flux Richardson number R_f is found to be proportional to the Richardson number R_i, with the proportionality coefficient varying slightly with stability, from 1.11 to 1.47. The Prandtl number decreases from 0.9 in nearly-neutral conditions to 0.7 for larger values of R_i. The budget of the turbulent kinetic energy indicates that for $R_i > 0.7$, turbulence must be non-stationary and decaying or sporadic. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral”, “weakly-stable”, “very-stable”, and "extremely-stable".