Effect of the solar-wind proton entry into the deepest lunar wake

Masaki N. Nishino (1), Masaki Fujimoto (1), Yoshifumi Saito (1), Shoichiro Yokota (1), Yoshiya Kasahara (2), Hideo Tsunakawa (3), Toshio Terasawa (4), and the SELENE LMAP and LRS-WFC Team

(1) ISAS/JAXA, Sagamihara, Japan (nishino@stp.isas.jaxa.jp), (2) Kanazawa University, Kanazawa, Japan, (3) Tokyo Institute of Technology, Meguro, Japan, (4) Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan

We study effect of the solar wind (SW) proton entry deep into the near-Moon wake that was recently discovered by the SELENE mission. Because previous lunar-wake models are based on electron domination, no effect of SW proton entry on the near-Moon wake environment has been taken into account so far. Recent SELENE observations revealed that a part of the SW protons are reflected at the lunar dayside surface and picked-up by the SW electric field (Saito et al., GRL, 2008), and some of them access the deepest lunar wake; this process is called type-II entry (Nishino et al., GRL, 2009). Here we show that the type-II entry of SW protons forms proton-governed region (PGR) to drastically change the electromagnetic environment of the lunar wake. Broadband electrostatic noise found in the PGR is manifestation of electron two-stream instability, which is attributed to the counter-streaming electrons absorbed from the ambient SW to maintain the quasi-neutrality. Acceleration of the absorbed electrons up to \(\sim 1 \) keV means a superabundance of positive charges of \(10^{-4} \)–\(10^{-7} \) cm\(^{-3}\) in the near-Moon wake, which should be immediately canceled out by the incoming high-speed electrons. This is a general phenomenon in the lunar wake, because PGR does not necessarily require peculiar SW condition for its formation.