

Experimental evidence for effects of stress on the CO₂ sorption capacity of coal under conditions relevant to ECBM

Sander Hol, Colin J. Peach, and Christopher J. Spiers

High Pressure and Temperature Laboratory, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
(sander.hol@geo.uu.nl)

Enhanced Coalbed Methane production (ECBM) involves the injection of CO₂ to desorb CH₄ from coal seams, while trapping CO₂ as a preferentially adsorbed phase. Successful ECBM relies on a clear understanding of coal-CO₂ interaction processes under the relevant subsurface conditions. Though adsorption of CO₂ by coal has been extensively studied in experiments, few systematic studies have been done on the effects of stress state on CO₂ sorption by coal. We have directly investigated the effects of stress on CO₂ adsorption by coal matrix material. To do this, we performed experiments in a one-dimensional oedometer-type compaction cell, using granular (crushed and sieved) coal matrix material. The loose, granular material was first equilibrated with CO₂ at pressures of 10.0-20.0 MPa and at a temperature of 40°C. The samples were then compacted at 40.0 MPa. After unloading and re-equilibration with respect to CO₂, the samples were re-loaded in a stepwise manner to axial stresses up to 35.0 MPa. Changes in the volume of CO₂ present in the sample during this stepping procedure were measured using a syringe pump. Our data show that stress reduces the adsorption capacity of the coal matrix for CO₂ by up to 20-50% under the conditions investigated. We explain our observations in terms of an effect of the external applied effective stress upon the free energy of adsorption in the nanoscale pores of the coal matrix. As reservoir models currently do not consider the role of overburden and horizontal stresses on the adsorption capacity in the coal seams, the effects of stress observed here may have important implications for predictions of the in situ CO₂ storage capacity of deep coal formations.

Acknowledgements

The authors acknowledge Shell International for funding the research presented in this paper (Contract No. 4600003671). Rick Wentink, Niels van Wageningen and Claus Otto are thanked for their support and valuable suggestions during the course of this study. Eimert de Graaff, Gert Kastelein and Peter van Krieken are thanked for their technical support.