First Eddy Covariance Flux Measurements of Methanol by PTR-TOF

Markus Müller (1,2), Martin Graus (1), Taina M. Ruuskanen (1), Ralf Schnitzhofer (1,2), Ines Bamberger (1), Lisa Kaser (1), Lukas Hörttnagel (3), Georg Wohlfahrt (3), Thomas Karl (4), and Armin Hansel (1)
(1) Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria (m.mueller@uibk.ac.at), (2) Ionicon Analytik, Innsbruck, Austria, (3) Institute of Ecology, University of Innsbruck, Innsbruck, Austria, (4) Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80307, USA

The recently developed PTR-TOF instrument was evaluated to measure methanol fluxes using the eddy covariance method. The PTR-TOF was employed at a well characterized temperate meadow field site in the Stubai valley, Austria, to measure VOC fluxes above an intensively farmed grass land. The high time resolution of the PTR-TOF allowed storing full mass spectra up to m/z 315 with a frequency of 10 Hz. Due to the high mass resolving power of the PTR-TOF three isobaric peaks were found at a nominal mass of m/z 33. Only one of the three peaks contributed to eddy covariance fluxes. The exact mass of this peak agrees well with the exact mass of protonated methanol (m/z 33.0335). The eddy covariance methanol fluxes measured with PTR-TOF were compared to virtual disjunct eddy covariance methanol fluxes simultaneously measured with a conventional PTR-MS. The methanol fluxes from both instruments show excellent agreement.