

Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations

Lars Ebner, David Schröder, and Günther Heinemann
University of Trier, 54286 Trier, Germany (ebner@uni-trier.de)

The interaction between polynyas in the Laptev Sea and the atmospheric boundary layer is examined with the regional, nonhydrostatic atmosphere model COSMO. A thermodynamic sea ice model is used to consider the response of sea ice surface temperature to idealized atmospheric forcing. Cold wintertime conditions are investigated with sea ice-ocean temperature differences up to 40 K combined with different wind speed by varying wind direction. The Laptev Sea flaw polynyas strongly modify the ABL. Strong wind regimes lead to a more shallow mixed layer with strong near-surface modifications, while weaker wind regimes show a deeper well-mixed convective boundary layer. Shallow mesoscale circulations occur in the vicinity of ice-free and thin ice covered polynyas. They are forced by large surface energy fluxes of up to 958 W m⁻², strong low-level thermally induced convergence, and additionally, cold air flow from the orographic structure at Taymir-Peninsula in the western Laptev Sea region. Based on the surface energy balance, we derive potential sea ice production rates between 8 cm d⁻¹ and 25 cm d⁻¹ in the Laptev Sea polynyas. The range is mainly controlled by the assumption whether the polynyas are ice-free or covered by thin ice and by the wind strength.