



## Role of Biofilms in Geological Carbon Sequestration

Robin Gerlach (1,2,3), Andrew C. Mitchell (2,3), Lee H. Spangler (3), Al B. Cunningham (2,3)

(1) (robin\_g@biofilm.montana.edu), (2) Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA, (3) Energy Research Institute, Montana State University, Bozeman, MT, USA

Geologic sequestration of CO<sub>2</sub> involves injection into underground formations including oil beds, deep un-minable coal seams, and deep saline aquifers with temperature and pressure conditions such that CO<sub>2</sub> will likely be in the supercritical state. Supercritical CO<sub>2</sub> (scCO<sub>2</sub>) is only slightly soluble in water (approximately 4%) and it is therefore likely that two fluid phases will develop in the subsurface, an aqueous and a supercritical phase. Supercritical CO<sub>2</sub> is less dense and much less viscous than water therefore creating the potential for upward leakage of CO<sub>2</sub> through fractures, disturbed rock, or cement lining near injection wells. Our research focuses on microbially-based strategies for controlling leakage of CO<sub>2</sub> during geologic sequestration and enhancing the process of CO<sub>2</sub> trapping.

We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials.

Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO<sub>2</sub>, and facilitate the conversion of gaseous and supercritical CO<sub>2</sub> into long-term stable carbonate phases as well as increase the solubility of CO<sub>2</sub> in brines.

Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO<sub>2</sub> leakage mitigation technologies which can be applied either before CO<sub>2</sub> injection or as a remedial measure.

Acknowledgement: This work was funded by the Zero Emissions Research and Technology (ZERT) program (U.S. DOE Award No. DE-FC26-04NT42262). However any opinions, conclusions, findings or recommendations expressed herein are those of the authors and do not necessarily reflect those of DOE.