Nonparametric estimation of seismic activity and seismic hazard

Victor German
Siberian State Aerospace University, High mathematics department, Krasnoyarsk, Russian Federation (germanv@rambler.ru, 007 3912 629554)

To characterize seismic regime in an area it is important to determine seismic activity. It also can be used for seismic hazard estimation. It was suggested a new general method of seismic activity estimation for a certain point in space, time and magnitude. This method is based on nonparametric statistics methods.

Let's determine seismic activity \(A \) in a magnitude-spatial-temporal interval – \((M, \Delta M, X, \Delta X, Y, \Delta Y, Z, \Delta Z, T, \Delta T) \) as number of seismic events \(N \) in this interval normalized to the size of this interval:

\[
A = \frac{N}{(\Delta X \Delta Y \Delta Z) \Delta T \Delta M} = \frac{N}{\Delta V \Delta T \Delta M}.
\]

It means that \(A = A(M, \Delta M, X, \Delta X, Y, \Delta Y, Z, \Delta Z, T, \Delta T) \) is a function of 10th parameters. Our goal will be estimation of seismic activity in a point, which is not depends on \(\Delta V, \Delta T \) and \(\Delta M \).

Let's considered interval will be a subinterval of a big interval \(I_{tot} \) with a large number of seismic events \(N_{tot} \). Then according to Bernoulli theorem ratio \(\frac{N}{N_{tot}} \) will be good probability estimation \(P \) for occurrence of next event in considered interval. In the same time the probability for small considered interval (when \(\Delta V, \Delta T, \Delta M \) are small) can be estimated as:

\[
P = p \Delta V \Delta T \Delta M,
\]

where \(p = p(M, X, Y, Z, T) \) is probability density function for occurrence of seismic event with magnitude \(M \) in time \(T \) and in point \((X, Y, Z) \).

As a result seismic activity can be estimated as

\[
A = \frac{N}{\Delta V \Delta T \Delta M} \approx \frac{N_{tot}P}{\Delta V \Delta T \Delta M} \approx N_{tot}p = N_{tot}p(M, X, Y, Z, T).
\]

To estimate probability density function for occurrence of seismic event with magnitude \(M \), in time \(T \) and in point \((X, Y, Z) \) the methods of nonparametric statistics can be used. Let's use Parzen-Rozenblatt estimation. In general for \(m \) variables \(x_1, x_2, ..., x_m \) it is

\[
\hat{p}_{N_{tot}}(x_1, x_2, ..., x_m) = \frac{1}{N_{tot}} \sum_{i=1}^{N_{tot}} \frac{1}{h_1 h_2 \cdot ... \cdot h_m} K \left(\frac{x_1 - x_{1i}}{h_1}, \frac{x_2 - x_{2i}}{h_2}, ..., \frac{x_m - x_{mi}}{h_m} \right),
\]

where \(K \) is a kernel function, \(h_1, h_2, ..., h_m \) are scaling parameters and \((x_{1i}, x_{2i}, ..., x_{mi}) \) are coordinates of \(i \)-th experimental point.

There are some limitation for kernel function:

\[
\int K(\xi) d\xi = 1, \quad \int |K(\xi)| d\xi < \infty, \quad \sup |K(\xi)| < \infty, \quad \lim_{\xi \rightarrow \infty} |\xi K(\xi)| = 0,
\]

where \(\xi \) is multivariate value \((\xi_1, \xi_2, ..., \xi_m) \).

For good qualities of \(p \) estimation, the scaling parameters \(h_j \) must depends on \(N_{tot} \) and answer following requirements:

\[
\lim_{N_{tot} \rightarrow \infty} N_{tot} h_1(N_{tot}) h_2(N_{tot}) \cdot ... \cdot h_m(N_{tot}) = \infty, \quad \lim_{N_{tot} \rightarrow \infty} \max_j (h_j(N_{tot})) = 0,
\]
\[
\lim_{N_{tot} \to \infty} N_{tot}[h_1(N_{tot})h_2(N_{tot}) \cdots h_m(N_{tot})]^2 = \infty.
\]

Parameters \(h_j = c_j(N_{tot})^{k/m} \), where \(0 < k < 1/2 \) and \(0 < c_j < \infty \) are suitable for this purposes.

As an example let use \(\exp(-|\xi|/h)/(2h) \) as a kernel function. In this case probability density function for occurrence of seismic event with magnitude \(M \), in time \(T \) and in point \((X, Y, Z)\) can be estimated as

\[
\hat{p}_{N_{tot}}(x, y, t, M) = \lim_{\Delta x, \Delta y, \Delta t, \Delta M \to 0} \frac{\Delta P(x, y, t, M, \Delta x, \Delta y, \Delta t, \Delta M)}{\Delta x \Delta y \Delta t \Delta K} =
\]

\[
= \frac{1}{N_{tot}} \sum_{i=1}^{N_{tot}} \left[\frac{1}{16\pi h_{xy}^2 h_t h_M} \exp \left(-\sqrt{\left(\frac{x - x_i}{h_{xy}} \right)^2 + \left(\frac{y - y_i}{h_{xy}} \right)^2} \right) \exp \left(-\frac{|t - t_i|}{h_t} \right) \exp \left(-\frac{|M - M_i|}{h_M} \right) \right].
\]

This estimation of probability density function for occurrence of seismic event with magnitude \(M \), in time \(T \) and in point \((X, Y, Z)\) can be considered as a seismic hazard estimation. Seismic activity can be estimated as \(A(x, y, t, M) \approx N_{tot} \hat{p}_{N_{tot}}(x, y, t, M) \).

The results of the described approach application for investigation of seismic activity in Altay-Sayan region (Russia) are discussed.