

Healing/sealing and transport properties of wellbore cement in the presence of supercritical CO₂

Emilia Liteanu (1,2) and Chris Spiers (1)

(1) Department of Earth Sciences, Utrecht University, The Netherlands, liteanu.e@gmail.com , (2) Shell International Exploration and Production, Rijswijk, The Netherlands

The process and the rate of carbonation reaction of Class A wellbore cement exposed to CO₂-saturated solution were investigated at confined conditions similar to those employed in geological storage of CO₂. The main goal was to investigate whether reaction improves or degrades the sealing/healing capacity of fractured Type A cement plugs. Batch reaction experiments were performed for up to three months, on both intact and fractured Class A Portland cement cylinders, at a constant confining pressure of 30 MPa, a temperature of 80°C and a CO₂ pressure of 10 MPa. The experiments were carried out on water-saturated samples, exposing them to the supercritical CO₂ at one end. All samples were jacketed in sleeves to seal them from the high pressure confining medium. The results indicate that cement carbonation front advanced in time, leading to a densification of the material. Extrapolation of the reaction rates to 1-year period indicates a carbonation depth of about 1.38 mm, and about 7.56 mm after 30 years of exposure to CO₂-saturated solution. Thermogravimetric analyses, Scanning Electron Microscopy observations and permeability measurements indicate that carbonation of wellbore cement leads to a decrease of the porosity of the material on the reaction front and moreover, has the potential for healing pre-existent fractures and for improving the sealing properties of good-quality cement samples in time, at reservoir conditions.