Inversion of synthetic geodetic data for planar fault events: clues on the effects of lateral heterogeneities and model selection.

Antonella Amoruso (1), Salvatore Barba (2), Luca Crescentini (3), and Antonella Megna (4)

(1) Dipartimento di Fisica Università di Salerno, Via Ponte Don Melillo Fisciano (SA), antonella.amoruso@sa.infn.it, (2) Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605 Roma, salvatore.barba@ingv.it, (3) Dipartimento di Fisica Università di Salerno, Via Ponte Don Melillo Fisciano (SA), luca.crescentini@sa.infn.it, (4) Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata 605 Roma, antonella.megna@ingv.it

In geodetic data inversions the medium is often represented as a homogeneous, isotropic, and elastic half-space or as a layered medium, and their elastic parameters are considered to be standard. The slip distribution on the fault plane is obtained by dividing the fault into (an arbitrary number of) sub-faults and minimizing a cost function which includes a smoothness (laplacian) term and a data-misfit one. The smoothing parameter is usually selected from the trade-off between the two terms when varying its value.

The use of layered models neglects many of the real characteristics in the crust, as the lateral heterogeneities; thus computed displacements and observed data may differ more than hypothesized measurement errors, using a layered although standard model. Moreover, choosing an improper number of sub-faults may lead to wrong reconstructed slip distributions.

We aim to quantify the effects of using standard layering when assessing source features from co-seismic deformation data, in geological environments typical of the Apennines (Italy). For this purpose, we invert synthetic co-seismic displacements at the surface - computed by a finite element model (MARC) for some source parameters and complex crustal structures - for a planar fault embedded in a standard layered medium. The blind inversions are performed using the ANGELA code following a two-step procedure: (i) global optimization, without the smoothness constraint, for a fault divided into a small number (6 max) of equally-sized sub-faults and selection of the best-model fault (AIC, Akaike Information Criterion), (ii) slip distribution on the (expanded) best-model fault from step (i) for different values of the smoothing parameter, choice of the best smoothing parameter from the trade-off curve and selection of the optimal number of sub-faults (AIC).

Results from several tests will be shown.