

Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO₂ injection

Daria Morozova (1), Mina Shaheed (1), Andrea Vieth (2), Martin Krüger (3), Dagmar Kock (3), and Hilke Würdemann (1)

(1) Helmholtz Centre GeoForschungsZentrum Potsdam, Centre for CO₂ storage, Telegrafenberg, 14473 Potsdam, Germany (Daria.Morozova@gfz-potsdam.de), (2) Helmholtz Centre GeoForschungsZentrum Potsdam, Organic Geochemistry Section, Telegrafenberg, 14473 Potsdam, Germany, (3) Department of Geomicrobiology, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany

Within the framework of the CLEAN project (CO₂ Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO₂ into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO₂ storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO₂ affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO₂ in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that the quantification of those microorganisms as well as the determination of microbial activity was not yet possible. Microbial monitoring methods have to be further developed to study microbial activities under these extreme conditions to access their influence on the EGR technique and on enhancing the long term safety of the process by fixation of carbon dioxide by precipitation of carbonates.

We would like to thank GDF SUEZ for providing the data for the Rotliegend reservoir, sample material and enabling sampling campaigns. The CLEAN project is funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the Geotechnologien Program.