Runup of landslide-generated waves

Irina Nikolkina (1,2), Ira Didenkulova (2,3), Efim Pelinovsky (1,2), and Narcisse Zahibo (1)
(1) Université des Antilles et de la Guyane, Laboratoire de Recherche en Géosciences (LaRGe), Département de Physique, Guadeloupe (irina.nikolkina@gmail.com), (2) Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Nizhny Novgorod, Russia, (3) Laboratory of Wave Engineering, Institute of Cybernetics, Tallinn, Estonia (ira@cs.ioc.ee +372 6204151)

Runup of waves generated by submarine landslides is studied within the shallow-water theory. The problem of wave shoaling and runup is studied analytically for two specific convex bottom profiles \(h \sim x^{4/3} \) and \(h \sim x^4 \).
For certain conditions on the landslide characteristics (speed and volume per unit cross-section) the wave field can be described explicitly. The runup of the landslide generated wave approaching the coast is studied analytically assuming that the wave does not break at the shoreline. The runup characteristics depend on the shape of the landslide, distance to the shore and the Froude number.