Power-law intermittent ratio distributions in marine ecology

Francois Schmitt and Sylvie B Zongo

CNRS, Lab. Oceanology and Geosciences, Laboratory of Oceanology and Geosciences, Wimereux, France
(francois.schmitt@univ-lille1.fr, +33 321 99 20 01)

In marine ecology and biogeochemical marine studies, one can find quite often some studies using ratio statistics between two quantities. There are two main instances where this happens: stoichiometry studies concerning nutrient concentrations in biogeochemical studies and sex ratio statistics in population dynamics studies. In the first case, one considers e.g. N/P ratio of nitrogen and phosphat concentration, to detect possible limitation nutrients for phytoplankton growth. The sex ratio statistics is the study of the ratio M/F of male to female concentration.

There are results concerning ratio statistics in the mathematical literature, and several theorem are known. For example, if the variables X and Y are Gaussian, the ratio Z=X/Y is a Cauchy random variable with power-law tail and its variance does not exist. There are other results for more general cases and globally, the ratio Z is in many situations an intermittent random variable with a power-law tail of exponent 2 or 3.

In the light of these results, we consider some experimental ratio of nutrient concentrations or sex ratio of zooplankton. We show that these distributions have power-law tails. We also discuss the difference between the mean of X/Y and of Y/X. Finally we underline the fact that the ratio of the mean is not the mean of the ratio. Our general conclusion is that a random variable created as a ratio of two variables has a very peculiar statistical behaviour and can only be used in experimental studies with much caution.