

Large-scale ocean modeling on unstructured meshes: current status and perspectives

Sergey Danilov, Qiang Wang, Dmitry Sidorenko, and Jens Schroeter

Alfred Wegener Institute for Polar and Marine Research, Climate System, Bremerhaven, Germany
(sdanilov@awi-bremerhaven.de)

Unstructured meshes allow the development of global ocean circulation models with a regional focus which avoid nesting and open boundaries. We present several applications simulated with the Finite-Element Sea-ice Ocean circulation Model (FESOM) to illustrate the success of this approach. They include analysis of long-term (500 years) behavior under CORE-I forcing, and process studies in setups focused on the Southern Ocean, Canadian Archipelago and the vicinity of Greenland on multidecadal time scales.

Models formulated on unstructured meshes are more expensive (per degree of freedom) than their regular-mesh counterparts, which explains ongoing search for optimal discretization. We briefly review some of discretizations tested by us or other groups and outline our view on short-term perspective in large-scale ocean modeling on unstructured meshes.