Statistical characteristics of the non-linear run-up measured in a wave flume

Petr Denissenko (1), Irina Didenkulova (2), Jonathan Pearson (3), and Efim Pelinovsky (4)

(1) University of Warwick, Coventry, UK (p.denissenko@warwick.ac.uk), (2) Institute of Cybernetics, Tallinn, Estonia (didenkulova@gmail.com), (3) University of Warwick, Coventry, UK (j.m.pearson@warwick.ac.uk), (4) Institute of Applied Physics, Nizhny Novgorod, Russia (pelinovsky@gmail.com)

Standard deviation, skewness, kurtosis, and extreme parameters of the run-up are investigated in a one-dimensional wave flume of 0.3 m depth and 16m length. Resistance probes are used to measure the water elevation far from the “shore” and capacitance probes are used to measure the run-up. Shallow water waves with the narrow band spectrum have been generated in a range of amplitudes. Differences between the linear and the non-linear run-up regimes have been detected and compared with the theoretical model [1].