Geophysical Research Abstracts Vol. 13, EGU2011-7980, 2011 EGU General Assembly 2011 © Author(s) 2011

Root water uptake and root permeability measured by heavy water injection and neutron radiography

Mohsen Zarebanadkouki (1), Andrea Carminati (1), Ahmad Moradi (2), Hans-Jörg Vogel (1), Abbas Dara (3), Hanna Esser (3), Stefan Hartmann (4), and Nikolay Kardjilov (5)

(1) Helmholtz Centre for Environmental Research - UFZ, Halle/ Leipzig, Germany, (2) University of California Davis, Department of Land, Air and Water Resources, California, USA, (3) University of Potsdam, Potsdam, Germany, (4) Paul Scherrer Institute - PSI, Switzerland , (5) Helmholtz Centre Berlin - HZB, Germany

Water uptake by plants is a major component of soil water balance. Physical properties of the root-soil interface and the hydraulic conductivity of roots are known to be important parameters controlling the water uptake rate. Despite the importance of these components, there is only a limited number of studies reporting their direct measurement. The lack of experimental data is largely due to technical problem of measuring water fluxes across soil and roots in-situ.

Objective of this study was to develop a method to map locations and temporal -dynamics of root water uptake of living plants. We combined neutron radiography with the tracer Deuterium Oxide (D_2O). D_2O has similar physical and chemical properties to normal water (H_2O) but it has a much lower neutron attenuation coefficient compared to normal water, which makes it well visible in neutron radiography.

We grew lupins in 30 x 15 x 1 cm containers filled with sandy soil. 16 days after planting, we locally injected D_2O in the soil next to various parts of the root system. We used time-series neutron radiography to image the D_2O redistribution after injection. D_2O injection at same locations during day and night was carried out for separating diffusion of D_2O in H_2O and convection processes due to net mass flow. The results showed that some minutes after D_2O injection, neutron attenuation inside the roots decreased due to D_2O entering the roots. The signal was used to estimate the diffusional permeability of roots as well as the net root water uptake. Afterwards, we observed that convective D_2O flow along the root till the plant shoot. No convective flow of D_2O uptake by the tap root, and higher uptake by lateral roots. We conclude that neutron radiography combined with D_2O injection is a promising technique to investigate root permeability and water fluxes in soil and plants.