Geophysical Research Abstracts Vol. 14, EGU2012-10919, 2012 EGU General Assembly 2012 © Author(s) 2012

Greatest point rainfall related to duration: Scaling and multifractal analysis in climate model simulations

H. Zhang (1,2) and K. Fraedrich (1)

(1) KlimaCampus, University Hamburg, Hamburg, Germany, (2) China Scholarship Council

Abstract

The world's greatest observed point rainfall over land P(d) to duration d reveals power law scaling in the d-range of minutes to years, $P \sim db$ with exponent $b \sim 0.5$. This scaling law analysis is revisited using grid-point data from a state of the art global climate model with different resolution (ECHAM5/MPI-OM T63- and T31-control runs). The following results are noted: (i) the scaling is larger and resolution dependent; the higher resolution is closer to the observed data; (ii) there is almost no land-sea difference in scaling; (iii) a multi-fractal analysis is applied to estimate the related parameters. Causes of the simulation-observation difference are discussed.

Keywords: rainfall, scaling law, multifractal analysis, climate simulations