Geophysical Research Abstracts Vol. 14, EGU2012-1119-1, 2012 EGU General Assembly 2012 © Author(s) 2011

Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

P. I. Moraru and T. Rusu

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Agriculture, Agrotechnics, Cluj Napoca, Romania (moraru_paulaioana@yahoo.com, 0040264593792)

Soil respiration leads to CO_2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO_2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc.

The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1–reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 – paraplow (18-22 cm) + rotary grape (8-10 cm); V3 – chisel (18-22 cm) + rotary grape (8-10 cm); V4 – rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 – direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean – autumn wheat.

To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO₂ Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1).

Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.

Acknowledgments: This work was supported by CNCSIS-UEFISCSU, project number PN II-RU 273/2010.