

A statistical mechanics approach to computing rare transitions in multi-stable turbulent geophysical flows

J. Laurie and F. Bouchet

Laboratoire de Physique, ENS de Lyon, Lyon, France (jason.laurie@ens-lyon.fr)

Many turbulent flows undergo sporadic random transitions, after long periods of apparent statistical stationarity. For instance, paths of the Kuroshio [1], the Earth's magnetic field reversal, atmospheric flows [2], MHD experiments [3], 2D turbulence experiments [4,5], 3D flows [6] show this kind of behavior. The understanding of this phenomena is extremely difficult due to the complexity, the large number of degrees of freedom, and the non-equilibrium nature of these turbulent flows. It is however a key issue for many geophysical problems.

A straightforward study of these transitions, through a direct numerical simulation of the governing equations, is nearly always impracticable. This is mainly a complexity problem, due to the large number of degrees of freedom involved for genuine turbulent flows, and the extremely long time between two transitions.

In this talk, we consider two-dimensional and geostrophic turbulent models, with stochastic forces. We consider regimes where two or more attractors coexist. As an alternative to direct numerical simulation, we propose a non-equilibrium statistical mechanics approach to the computation of this phenomenon. Our strategy is based on large deviation theory [7], derived from a path integral representation of the stochastic process. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable one. Moreover, we also determine the transition rates, and in which cases this most probable trajectory is a typical one.

Interestingly, we prove that in the class of models we consider, a mechanism exists for diffusion over sets of connected attractors. For the type of stochastic forces that allows this diffusion, the transition between attractors is not a rare event. It is then very difficult to characterize the flow as bistable. However for another class of stochastic forces, this diffusion mechanism is prevented, and genuine bistability or multi-stability is observed.

We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans.

References

- [1] M. J. Schmeits and H. A. Dijkstra: Bimodal behavior of the Kuroshio and the Gulf stream. *J. Phys. Oceanogr.* **31**:3435–3456, 2001.
- [2] E. R. Weeks, Y. Tian, J. S. Urbach, K. Ide, H. L. Swinney and M. Ghil: Transitions between blocked and zonal flows in a rotating annulus with topography. *Science* **278**:1598–1601, 1997.
- [3] M. Berhanu *et al.*: Magnetic field reversals in an experimental turbulent dynamo. *Europhys. Lett.* **77**:59001, 2007.
- [4] J. Sommeria: Experimental study of the two-dimensional inverse energy cascade in a square box. *J. Fluid Mech.* **170**:139–168, 1986.
- [5] S. R. Maassen, H. J. H. Clercx and G. J. F. van Heijst: Self-organization of decaying quasi-two-dimensional turbulence in stratified fluid in rectangular containers. *J. Fluid Mech.* **495**:19–33, 2003.
- [6] F. Ravelet, L. Marié, A. Chiffaudel and F. Daviaud: Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. *Phys. Rev. Lett.* **93**:164501, 2004.
- [7] M. I. Freidlin and A. D. Wentzell: *Random perturbations of dynamical systems*. 2nd ed. Springer, New York, 1998.