

Using radiocarbon as a high-frequency tracer of forest CO₂ emissions sources: preliminary results from a Northern Wisconsin case study

C.L. Phillips (1), K.J. McFarlane (1), A.R. Desai (2), and D. Risk (3)

(1) Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, Livermore, United States (claire.phillips@llnl.gov), (2) Dept of Atmospheric and Ocean Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA (desai@aos.wisc.edu), (3) Dept of Earth Sciences, St Francis Xavier University, Antigonish, Nova Scotia, Canada (drisk@stfx.ca)

Radiocarbon represents a potentially sensitive natural tracer for detecting contributions of soil carbon to whole forest CO₂ emissions. We are monitoring the ¹⁴C abundance in soil and whole ecosystem CO₂ emissions from a Northern Wisconsin deciduous hardwood forest, to 1) examine how the age of soil carbon emissions varies at high frequencies (weekly to seasonal timescales), and 2) ascertain whether soil carbon dynamics can be detected in the ¹⁴C abundance of CO₂ at higher atmospheric levels (30 m and 450 m). Preliminary results suggest ¹⁴C abundance in CO₂ above the forest canopy does vary substantially, and is consistent with changing contributions from forest respiration as well as fossil fuel emissions. Measurements and modeling suggest the age of soil CO₂ emissions likely varies in response to abiotic drivers (moisture, temperature) as well as biotic drivers (plant activity).