

CO₂ and CH₄ supersaturation of headwater streams across forested Sweden

M. Wallin (1), S. Löfgren (2), K. Bishop (1,2)

(1) Uppsala University, Uppsala, Sweden, (2) Swedish University of Agricultural Sciences, Uppsala, Sweden

Lateral export of carbon (C) from soils to running waters is a persistent pathway for C with terrestrial origin. This “aquatic conduit” might be especially important in boreal regions where a significant part of the global C stock is stored in the soil. Even though the awareness of the fate of terrestrially derived C is increasing in regional and global C budgets, the scarcity of data on the contribution of streams is widely acknowledged. In particular, the evasion (degassing) of gaseous C (i.e. CO₂ and CH₄) from the water surface of streams requires better characterization.

In this study we present CO₂ and CH₄ data from ~200 randomly selected headwater streams in forested catchments along the west coast and in the central part of Sweden. The streams were sampled by headspace technique at four occasions during different seasons to cover seasonal dynamics. All streams, independent of season, were supersaturated in CO₂ (median pCO₂=2763 μ atm) and a majority (~60%) in CH₄. There were however large seasonal variability and with indications that the main source of dissolved inorganic carbon (DIC) (geogenic vs. biogenic) varies both with space and time. To determine the source of the DIC is important when including aquatic C fluxes into the terrestrial C balance. Without this information the source strength of evasion from headwater streams will remain uncertain