

HALO aircraft measurements of East Asian anthropogenic SO₂ import into the lower stratosphere by a warm conveyor belt uplift

H. Schlager (1), F. Arnold (2,1), H. Aufmhoff (1), R. Baumann (1), L. Pirjola (3), A. Roiger (1), T. Sailer (1), M. Wirth (1), and U. Schumann (1)

(1) Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany (hans.schlager@dlr.de), (2) Max Planck Institut für Kernphysik, Heidelberg, Abteilung Atmosphärenphysik, Germany, (3) Metropolia University of Applied Sciences, Helsinki, Finland

We report on a case study of anthropogenic SO₂ pollution transport into the lower stratosphere from East Asian source regions. The pollution layer was observed over Central Europe by measurements from the new German research aircraft HALO. The layer contained enhanced SO₂, HNO₃ and water vapor and caused increased Lidar backscatter radiation. Meteorological analysis and air mass transport and dispersion model simulations reveal that the detected pollutants were released from ground-based sources in East-China, South-Korea, and Japan. The pollution plume was uplifted by a warm conveyor belt associated with a West-Pacific cyclone and finally injected into the lower stratosphere. Our HALO measurements were performed 5 days after the air mass uplift event, when significant parts of the Northern Hemisphere were already covered by the pollution plume. Accompanying trajectory chemistry and aerosol box model simulations indicate that H₂SO₄/H₂O aerosol droplets were generated in the SO₂-rich plume and grew to sizes large enough to explain the observed increased Lidar backscatter signal. Implications of the SO₂ transport pathway into the lower stratosphere presented in this study will be discussed.