

A climate model study of an intense Asian Monsoon in a La Niña-like climate of MIS-13

M. P. Karami, A. Berger, N. Herold, and Q. Z. Yin

George Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Universite catholique de Louvain
(pasha.karami@uclouvain.be)

Studying the paleo-monsoon during past interglacials is a valuable approach to improve our understanding of the monsoon system in present-day and future climates. We focus on Marine Isotopic stage 13 (MIS-13; ~ 0.5 Ma) which was a relatively cool interglacial, but with a paradoxically intense monsoonal precipitation over eastern and southern Asia. Our main goal is to understand the physics-based mechanism driving the intense monsoon, specifically the East Asian Summer Monsoon (EASM), during MIS-13.

We applied both an intermediate complexity model (LOVECLIM) as well as fully coupled general circulation models (HadCM3 and CCSM3) to simulate pre-industrial and MIS-13 climates. The boundary conditions for MIS-13 were chosen for 506 ka with Northern-Hemisphere (NH) summer at perihelion and a CO₂ concentration of 240 ppm. For pre-industrial, NH-winter occurring at perihelion and a CO₂ concentration of 280 ppm were prescribed.

Preliminary analysis of the model results shows different atmospheric and oceanic features in MIS-13 compared to the pre-industrial which could affect the EASM. The Northern Pacific Subtropical High (NPSH), which is an important factor in controlling the EASM, strengthened and extended to the northwest in MIS-13 partially due to cooling of the central Pacific Ocean. This in turn brought more moisture from the Central Pacific to the EASM-region and caused a northwestward shift and bending of the low-level jet along East Asia. The change in the low-level jet subsequently increased the meridional wind velocity at 850 mbar in the EASM-region providing more moisture from the tropical Pacific and Indian Oceans. In addition, higher sea-surface temperature in the Indian Ocean during MIS-13 further increased the source of moisture for the EASM. The Asian low, which is another component of the EASM-system, also shifted eastward moving the rain band northward.

Moreover, it was found that MIS-13 had a dominant La Niña condition in the tropical Pacific. La Niña-type climate is normally expected to favor increases in precipitation in the EASM through the NPSH as can be seen in MIS-13. Whether there was ENSO variability around the La Niña-like background climatic state of MIS-13 or not is under further investigation. The correlation between the sea-surface temperature variability in the tropical Pacific and the EASM precipitation was found to increase in MIS-13 compared to the pre-industrial which is another factor explaining the intensified EASM in MIS13.

Although our model results show high precipitation for MIS-13 qualitatively consistent with data, we are still interested in other factors that could increase the precipitation even further.

*This work is supported by the European Research Council Advanced Grant EMIS (No 227348 of the Programme 'ideas')