

Online Compound-Specific $\delta^{13}\text{C}$ and δD Determinations Using Laser Spectroscopy

N. Saad and J. Hoffnagle
Picarro, United States (nsaad@picarro.com)

A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both $\delta^{13}\text{C}$ and δD of the CO_2 and H_2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO_2 and H_2O and the precise measurements of $\delta^{13}\text{C}$ in the CO_2 gas and δD in the H_2O vapor from the well established infrared spectrum of both gases, using an isotopic CO_2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H_2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH_4 , C_2H_6 and C_3H_8 for $\delta^{13}\text{C}$ and δD values resulted in precisions of $\text{SD}(\delta^{13}\text{C}) < 1\text{\textperthousand}$ and $\text{SD}(\delta\text{D}) < 2\text{\textperthousand}$ respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures $\delta^{13}\text{C}$ and δD , is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.