

Strong indications of nitrogen limited methane uptake in tropical forest soils

E. Veldkamp (1), B. Koehler (2), and M.D. Corre ()

(1) University of Göttingen, Soil Science of Tropical Ecosystems, Göttingen, Germany (eveldka@gwdg.de), (2) Uppsala University, Evolutionary Biology Centre, Department of Limnology, Uppsala, Sweden

Tropical forest soils contribute an estimated 6.2 Tg yr^{-1} (27%) to global methane (CH_4) uptake, which is large enough to alter the CH_4 accumulation in the atmosphere if significant changes would occur to this sink. Elevated deposition of inorganic nitrogen (N) to temperate forest ecosystems has shown to reduce CH_4 fluxes from forest soils, but almost no information exists from tropical forest soils even though projections show that N deposition will increase substantially in tropical regions. Here we report the results of a long-term, ecosystem scale experiment in which we assess the impact of chronic N addition on soil CH_4 fluxes from two old-growth tropical forests in Panama: a lowland forest on a deeply weathered soil with control and 9-12-yr N addition, and a montane forest on a less-developed volcanic soil with control and 1-4-yr N addition. CH_4 fluxes from the lowland forest control plots ($-21.47 \pm 1.57 \mu\text{g CH}_4\text{-C m}^{-2} \text{ h}^{-1}$) and the montane forest control plots ($-3.99 \pm 3.40 \mu\text{g CH}_4\text{-C m}^{-2} \text{ h}^{-1}$) did not significantly differ from their respective N-addition plots. In the lowland forest, chronic N addition did not lead to inhibition of CH_4 uptake; in contrast, a negative correlation of NO_3^- with CH_4 fluxes in these plots suggests that higher NO_3^- availability may have stimulated CH_4 consumption and/or reduced CH_4 production. Also in the montane forest, we detected negative correlation of CH_4 fluxes with NH_4^+ both in the organic layer and mineral soil, which we interpret as evidence that CH_4 consumption may have been N limited. That chronic N addition did not lead to higher CH_4 uptake at any of these sites was probably caused by the large spatial variability of CH_4 fluxes which may have rendered treatment effect not statistically significant. Furthermore, in the lowland forest soil CH_4 uptake was limited by diffusion of CH_4 from the atmosphere into the soil, which was not alleviated by N addition. We conclude that in these extremely different tropical forest ecosystems, there were strong indications of N limitation on CH_4 uptake and that based on these results it is unlikely that elevated N deposition on tropical forests will lead to widespread inhibition of CH_4 uptake.