

N₂O emission from organic barley cultivation as affected by green manure treatment

S. Nadeem, S. Hansen, M. Bleken, and P. Dörsch

Norwegian University of Life Sciences, Plant and Environmental Sciences, Norway

Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM). Here we report N₂O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and replacement as biogas residue to a subsequent barley crop. Grass-clover ley had significantly higher N₂O emissions as compared with a non fertilized cereal reference during the GM year (2009). Mulching of herbage induced significantly more N₂O emission (+ 0.37 kg N₂O-N ha⁻¹) throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM) resulting in generally higher N₂O emissions during barley production. Addition of biogas residue (80 kg N ha⁻¹) in 2010 to previously non mulched GM and unfertilized cereal plots (2009) had no significant effect on cumulative N₂O emissions relative to a treatment receiving the same amount of N in form of mulched aboveground GM. Ley management (mulching vs. removing biomass in 2009) had no effect on N₂O emissions during barley production in 2010. In general, organic amendments (previously mulched or harvested GM, biorest) increased N₂O emissions relative to a reference treatment with low mineral N fertilisation (80 kg N ha⁻¹). Organic cereal production emitted 95 g N₂O-N kg⁻¹ N yield in barley grain, which was substantially higher than in the reference treatment with 80 kg mineral N fertilization in 2010 (47 g N₂O-N kg⁻¹ N yield in barley grain).