Geophysical Research Abstracts Vol. 14, EGU2012-1482, 2012 EGU General Assembly 2012 © Author(s) 2012

Dual-chamber measurements of δ 13C of soil-respired CO $_2$ partitioned using a field-based three end-member model

F. Albanito, J. McAllister, P. Smith, and D. Robinson United Kingdom (f.albanif@abdn.ac.uk)

Reliably estimating the heterotrophic component of RS is crucial for the characterisation of an ecosystem's net C balance. However, the contribution of 'historical' soil C (SOM) to total soil respiration (RS) in forest remains still uncertain. One of the contributing factors of this uncertainty is the difficulty to reliably measure and partition key carbon-cycle processes. Isotopic methods, such as natural variations in carbon isotope composition (δ 13C) of soil respiration, are more frequently being applied, and show promise in separating heterotrophic and autotrophic contributions to RS. In this study we report the partitioning of soil-surface CO_2 effluxes, measured in forests in Italy and in Germany, using a new field-based δ 13C method and a three end-member mixing model. Soil-surface CO_2 flux was partitioned into components derived from root, litter/humus and SOM sources, and compared this with the conventional partitioning into autotrophic and heterotrophic components (two end-member mixing model). In addition, we used a novel dual-chamber technique to ensure that measurements of δ 13CRs were subjected to minimal artefacts during measurement. Our results provide new information about the contributions of belowground components to the CO_2 flux at the soil surface, and show an alternative approach to the partitioning of RS components using their 13C signatures.