

Amazon tree stems respiration: Is the O₂ influx a better measure?

A. Angert (1), J. Muhr (2), R. Negron Juarez (3), W. Alegria Muñoz (4), J.Q. Chambers (5), and S.E. Trumbore (2)

(1) Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel (angert@huji.ac.il), (2) Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany (trumbore@bgc-jena.mpg.de), (3) Ecology and Evolutionary Biology, Tulane University, New Orleans, USA (rjuarez@tulane.edu), (4) Facultad de Ciencias Forestales, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru (walmu@hotmail.com), (5) Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, USA (jchambers@lbl.gov)

Respiration in tree stems strongly controls the tree carbon use efficiency. The rate of CO₂ efflux from the stem has often been assumed to be a measure of stem respiration. However, recent work has demonstrated that stem CO₂ efflux can either overestimate or underestimate respiration rate, because of emission or removal of CO₂ by transport in xylem water. Here, we have used high precision measurements of O₂ to estimate the ratio between local stem respiration and local CO₂ efflux, in tropical forest trees. This approach is based on the much lower solubility of O₂ in water relatively to CO₂. The measured ratios between the stems CO₂ efflux and O₂ influx indicated that a large portion of the respired CO₂ (~35% on average) is not emitted locally, and is probably transported upward in the stem. Our results indicate the existence of a considerable internal flux of CO₂ in the stem. If the transported CO₂ is used in the canopy as a substrate for photosynthesis, it could account for several percent of the carbon fixed by the tree, and perhaps serve as a mechanism that buffers the response of the tree to changing CO₂ levels or to drought stress. We have also demonstrated that measurements of O₂ uptake, while more difficult to make, can be a more appropriate method to estimate stem respiration rates.