

Could the Tritium Precipitation Record be found in Aquifers?

J. Sueltenfuss

University of Bremen, Institute of Environmental Physics, Bremen, Germany (suelten@uni-bremen.de)

The Helium Isotope Lab Bremen analysed some hundreds of groundwater samples for ^3H (tritium) and ^3He , ^4He and Ne in order to provide ^3H - ^3He ages. A subset of about 400 samples from shallow wells with short filter screen ($\leq 2\text{m}$) in sandy aquifers in northern Europe were selected.

From ^3H - ^3He ages the infiltration periods were calculated. For the identified infiltration periods the sum of ^3H plus ^3He could be compared with the tritium concentration in precipitation at that period. For times after 1975 the concentration of ^3H plus ^3He in groundwater follows the tritium precipitation record. But for the period of 1960 to 1975 the high tritium concentration in precipitation could not be detected in the aquifers, neither the ^3H signal nor the ^3He signal. Any supposed magnitude of dispersion for the aquifers does not account for this. It is implausible that water from the 1960 - 1970 period did not enter the aquifers.

Continental pre-bomb tritium records are rare, but state a natural tritium concentration in rain of about 5 TU for the continental northern hemisphere. Hence old groundwater should contain ^3He of the equivalent of about 5 TU from natural tritium. Our field studies with old groundwater ($^3\text{H} < 0.2\text{ TU}$) did not display accumulated ^3He from tritium decay in the order of 5 TU (depending on assumed infiltration conditions).

In both cases expected ^3He was missing in the water bodies. Explanations about this feature are rare and remain very speculative.

Is there any way for the ^3He from tritium decay to escape from the water body?

Is there an effective unsaturated zone of extended thickness affecting the gases differently?

It should be pointed out that in a study of bank filtration the tritium peak from river water of the early 60ies was found, hence ^3He was not missing.

This contribution may raise a discussion on the general time evolution of noble gases in aquifers.