Geophysical Research Abstracts Vol. 14, EGU2012-2560-1, 2012 EGU General Assembly 2012 © Author(s) 2012

$O_2(b^1\Sigma_a^+, v = 0, 1)$ Relative Yield in $O(^1D) + O_2$ Energy Transfer

O. Kostko, S. Raj, K. M. Campbell, D. A. Pejakovic, T. G. Slanger, and K. S. Kalogerakis SRI International, Molecular Physics Laboratory, Menlo Park, United States (ksk@sri.com)

Energy transfer from excited $O(^1D)$ atoms to ground-state $O_2(X^3\Sigma_g^-)$ leads to production of O_2 in the first two vibrational levels of the $O_2(b^1\Sigma_g^+)$ state: $O(^1D) + O_2 \rightarrow O(^3P) + O_2(b^1\Sigma_g^+, v=0, 1)$. Subsequent radiative decay of $O_2(b^1\Sigma_g^+, v=0, 1)$ to the ground state results in the Atmospheric Band emission, a prominent feature of the terrestrial airglow. The relative yield for production of $O_2(b^1\Sigma_g^+, v=0, 1)$ in the above process, k_1/k_0 , is an important parameter in modeling of the observed O_2 Atmospheric Band emission intensities.

In the laboratory experiments, the output of a pulsed fluorine laser at 157 nm is used to photodissociate molecular oxygen in an O_2/N_2 mixture flowing through a heated gas cell. Photodissociation of O_2 produces a ground-state $O(^3P)$ atom and an excited $O(^1D)$ atom. $O(^1D)$ rapidly transfers energy to the remaining O_2 to produce $O_2(b^1\Sigma_g^+, v=0, 1)$. The populations of $O_2(b^1\Sigma_g^+, v=0, 1)$ are monitored by observing emissions in the $O_2(b-X)$ 0–0 and 1–0 bands at 762 and 688 nm, respectively. The value of V_1/V_0 is extracted from the time-dependent $V_2(b^1\Sigma_g^+, v=0, 1)$ fluorescence signals using computer simulations. We find that production of V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 is substantially larger than that of V_1/V_0 is extracted from the time-dependent V_1/V_0 .

We will present measurements on k_1/k_0 and its temperature dependence, and discuss the significance of these and other relevant laboratory measurements on the interpretation of the O_2 Atmospheric Band emission.

This work was supported by the US National Science Foundation (NSF) Aeronomy Program under grant AGS-0937317. The fluorine laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The participation of Sumana Raj and Kendrick M. Campbell was supported by a Research Experiences for Undergraduates (REU) site, co-funded by the Division of Physics of the NSF and the Department of Defense in partnership with the NSF REU program (PHY-1002892).