

Effect of flow rate and initial aperture on fractured cement plug subjected to CO₂

H. Abdoulghafour (1), L. Luquot (2), and P. Gouze (3)

(1) UM2, CNRS, Geosciences, Montpellier, France (halidi@gm.univ-montp2.fr, 33(0)467143642), (2) CSIC Barcelona, Spain(2), (3) UM2, CNRS, Geosciences, Montpellier, France

Effect of flow rate and initial aperture on fractured cement plugs subjected to CO₂ rich brine under geo-sequestration conditions

Abdoulghafour Halidi, Linda Luquot and Philippe Gouze

Laboratoire Géosciences Montpellier, UMR 5243, Montpellier, France (1,3), CSIC Barcelona, Spain(2)

Laboratory studies conducted on cement materials under CO₂ sequestration conditions, showed evidence of alteration due to CO₂ attack. Therefore cement alteration is controlled by hydrodynamic parameters and chemical processes.

In this study we present three percolation experiments conducted on fractured cement plugs using the same thermodynamic conditions (T = 60°C, P = 10 MPa). Such experiment allow to simulate leakage limestone reservoirs. Hydro-chemical processes were determined based on fluid flow velocity and initial fracture aperture. During experiment conducted on most opened fracture ($a_0 = 43\mu\text{m}$), with high flow rate of 2 ml/min and lasted 25h, in situ permeability remains constant for 18h exposure, then decreases to the end of experiment. Similar observation has been seen for experiment conducted on more or less closed fracture ($a_0 \sim 7\mu\text{m}$), with very slow flow (0.05) where slow increase of permeability was recorded followed by progressive decrease from 13h to the end of experiment (28h). On the other hand, we performed short-term experiment lasted 6h on intermediate opened fracture ($a_0 = 27\mu\text{m}$), using high flow rate of 2 ml/min. Permeability change was recorded during the first hour experiment, then remains constant still the end of CO₂ exposure. Chemical analysis performed on outlet fluid match with permeability evolution as they showed the effect of flow rate on dissolution as well as precipitation.

From this data set we could evidence the determining role of local velocity of fluid renewal on reaction processes, leading to structures and hydrodynamic changes.

Presented results were reproduced using coupled reactive-transport model highlighting the important role of transport processes

Keywords: CO₂ sequestration, cement plug, flow rate, permeability, transport, chemical processes, reactive-transport model