

Structure and evolution of the mantle column beneath the Nakyn kimberlite field.

I. Ashchepkov (1), Yu Stegnitsky (2), V Minin (1), A Tolstov (2), N Vladkyin (3), A Rotman (2), S Palessky (1), A Agashev (1), O. Khmelnikova (1), M, and Skvortsova (1)

(1) Institute of Geology and Mineralogy, Geodynamics, Novosibirsk, Russian Federation (igor.ashchepkov@igm.nsc.ru, +7 (383) 333-27-92), (2) Alrosa Stock Company, Mirny, Russia, (3) Institute of Geochemistry SD RAS, Irkutsk, Russia

Nakyn kimberlites refer to the main stage of kimberlite magmatism in Yakutia (Agashgev et al., 2004) Upper Devonian (UD) kimberlites. Minerals from the concentrates analyzed by EPMA and LAM ICP from Nyurbinskaya, Botuobinskaya pipes and Maiskaya body and placer were compared to determine mantle structure and compositions. Peridotite garnet population of all pipes corresponds to the lherzolite field to pyroxenitic 15% Cr₂O₃ (Pokhilenko, Sobolev, 2004), the subcalsic garnets prevail in (8-11; Cr₂O₃). Peaks of the TiO₂ and Na₂O correspond to the same Cr₂O₃ intervals. (Zinchuk et al, 2003). In chromite trend Cr₂O₃ (65-20%) lognormal decrease with TiO₂ enrichment 3.5% in the beginning. In tuffs containing clinopyroxenes from Nyurbinskaya, Botuobinskaya pipes show decrease of Na, Al, Ti and Cr rise with Fe as for Mir pipe. The Cp in Nurbinskaya tuffs with Ilm are higher in TiO₂. Restricted in TiO₂ ilmenite trend show rapid decrease of Na₂O, MgO content and V₂O₅ -FeO rise (Fig. 4).

The PTFO₂ diagrams determined with new variant of the monomineral thermobarometry (Ashchepkov et al., 2010; 2012) reveal a bit different geotherms for Nyurbinskaya pipe 38 to 43 mv/m² for garnets and Sp estimates and colder for CPx. The refertilization interval marked by Fe rich Cpx and Ilm is 65-30 kbar. For the Botuobinskaya pipe there are 2 branches 40 and 35 mv/m² and the heating branch at 65 kbars. Mayskaya is showing the colder geotherm but deviations to the hotter part correspondent to the pyroxenites. The Placer in this area show the wider variations of PT conditions and refertilization interval possibly showing possibility of another source of the disintegration which is much rich in the pyroxenites which amount is highly increase with the depth. The comparisons of the PT conditions show that possibly the Mayskaya and Botuobinskaya pipes represent the earlier stages of the developing of mantle columns while Nyurbinskaya the later one but amount of pyroxenites in Nyurbinskaya is less than in Mayskoe. The pyrope diamond inclusions (Specius et al., 2008) are referring to the Fe- rich refertilization pyroxenitic trend and possibly represent the stage of the

The HT coarse grained green megapyroxenites are abundant as well as the discrete mica are tracing feeding system. Ilmenite megacrysts probably trace mainly the deeper part of the pre- eruption feeding system.

TRE for the garnets from Nurbinskaya pipe show primitive rounded REE pattern with small Ce minima. Degree of depletion is correlating with depth of the minima in HMREE. All of them display strong peaks in Pb and U typical for the subduction - related melts they are rather high in Ta but have Nb minima. The Clinopyroxenes display the rather unusual Th peak typical for carbonatic melts (related to protokimberlites).

All the geochemical features of the minerals in concentrate suggest the hybridization of the mantle peridotites with the abundant subduction material (pellitic) together with some subducted ocean sediments. Grants RFBR : 11-05-00060