Geophysical Research Abstracts Vol. 14, EGU2012-3403, 2012 EGU General Assembly 2012 © Author(s) 2012

Detection of lower ionosphere by using signal to noise ratio data of radio occultation technique

W.-H. Yeh (1), C.-Y. Huang (2), T.-Y. Hsiao (3), T.-C. Chiu (1), and Y.-A. Liou (4)

(1) Department of Electrical Engineering, Naitonal Central University, Taiwan, (2) GPS Science and Application Research Center, Naitonal Central University, Taiwan, (3) Department of Information Technology, Hsing Wu Institute of Technology, Taiwan, (4) Center for Space and Remote Sensing Research, Naitonal Central University, Taiwan

With the advent of global positioning system (GPS), radio occultation (RO) technique has been used to detect the Earth's atmosphere. Taiwan has launched six low Earth orbit satellites as a RO constellation mission, named FORMOSAT-3/COSMIC (F-3) in 2006. F-3 mission release 1500-2000 high rate (50 Hz) RO set for neutral atmosphere per day and the average upper altitude is 120 km. When GPS signal propagate through the ionosphere, the irregularities of ionosphere will affect the signal and cause fluctuation in signal to noise ratio (SNR) profiles. In this study, the relation between electron density and the fluctuation in SNR profile is simulated by using ray tracing method based on geometrical optics. Furthermore, an analysis method of the fluctuation data is developed to map the global coverage of fluctuation distribution.