Geophysical Research Abstracts Vol. 14, EGU2012-3536, 2012 EGU General Assembly 2012 © Author(s) 2012

Bayesian analysis of the modified Omori law

M. Holschneider (1), C. Narteau (2), P. Shebalin (3), Z. Peng (4), and D. Schorlemmer (5)

(1) Institute of Dynamics of Complex Systems (DYCOS) Universitat Potsdam, POB 601553, 14115 Potsdam, Germany., (2) Institut de Physique du Globe de Paris, Sorbonne Paris Cit\'e, Univ Paris Diderot, UMR 7154 CNRS, 1 rue Jussieu, 75238 Paris, Cedex 05, France., (3) International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Moscow, 84/32 Profsouznaya, Moscow 117997, Russia., (4) School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0340, USA., (5) Helmholtz Center Potsdam - GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany.

In order to examine variations in aftershock decay rate, we propose a Bayesian framework to estimate the $\{K,c,p\}$ -values of the modified Omori law (MOL), $\lambda(t) = K(c+t)^{-p}$. The Bayesian setting allows not only to produce a point estimator of these three parameters but also to assess their uncertainties and posterior dependencies with respect to the observed aftershock sequences. Using a new parametrization of the MOL, we identify the trade-off between the c and p-value estimates and discuss its dependence on the number of aftershocks. Then, we analyze the influence of the catalog completeness interval $[t_{\text{start}}, t_{\text{stop}}]$ on the various estimates. To test this Bayesian approach on natural aftershock sequences, we use two independent and non-overlapping aftershock catalogs of the same earthquakes in Japan. Taking into account the posterior uncertainties, we show that both the handpicked (short times) and the instrumental (long times) catalogs predict the same ranges of parameter values. We therefore conclude that the same MOL may be valid over short and long times.