

Electric field structure inside the secondary island in reconnection diffusion region

M. Zhou (1), X.H. Deng (1,2), and S.Y. Huang (2)

(1) Institute of Space Science and Technology, Nanchang University, China (monmentum82@gmail.com), (2) School of Electronic and Information, Wuhan University, China

Secondary islands have recently been intensively studied because of its essential role in energy dissipation during reconnection. It is generally formed due to tearing instability in a stretched current sheet with or without guide field. In this presentation we study the electric field structure inside the secondary island in diffusion region by large scale two-and-a-half dimensional Particle-In-Cell (PIC) simulation. Intense in-plane electric fields, which point toward the center of island, are formed inside the secondary island. The magnitudes of in-plane electric field E_x and E_z inside the island are much larger than those outside the island in diffusion region. Their maximum magnitudes are about 3 times the $B_0 V_A$, where B_0 is the asymptotic magnetic field strength and V_A is the Alfvén speed based on B_0 and initial current sheet density. Our results could explain the intense electric field ($\sim 100 \text{ mV/m}$) inside the secondary island observed in the Earth magnetosphere. E_x inside the secondary island is primarily balanced by the Hall term $(j \times B)/ne$, while E_z is balanced by a combination of $(j \times B)/ne$, $-(v_i \times B)$ and divergence of electron pressure tensor with $(j \times B)/ne$ term dominates. This large Hall electric field is due to the large out-of-plane current density j_y inside the island, which is mainly carried by accelerated electrons forming strong bulk flow in the $-y$ direction. E_y shows bipolar structure across the island, with negative E_y corresponding to negative B_z and vice versa. It is balanced by $(j \times B)/ne$ and convective electric field. There are significant parallel electric fields, forming quadrupolar structure, inside the island with largest amplitude about $0.3 B_0 V_A$.