

Influence of orography on variability of a non-CO₂ greenhouse gases concentrations measured at Kasprowy Wierch station, Tatra, Poland

J. Necki (1), L. Chmura (2), and M. Zimnoch (1)

(1) AGH- University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
(necki@agh.edu.pl), (2) IMGW -Institute of Meteorology and Water Management, Branch in Kraków, Kraków, Poland

Kasprowy Wierch is a mountain peak in north-western Tatra mountain ridge, where meteorological station was settled in year 1936. As the station is situated in the convergence area of three large valleys it suffers from breeze wind and from frequent katabatic winds as well. Unfortunately vertical constituent of wind is not measured at the station. Prevailing wind direction pattern in this part of Europe is western circulation. However 75-years record consistently indicate south as the predominant direction of wind at Kasprowy Wierch. Two of the valleys coming toward this mountain peak are forcing the transport of air exactly from that direction.

Since 1994 trace gas analysis is performed at the station. In year 1996 automated gas chromatograph was installed at the station and data are collected till nowadays. "In situ" concentrations of CH₄, N₂O and SF₆ are measured every 16 minutes. Since 2010 also H₂ and CO are observed at the station. Especially carbon monoxide concentration may be used as a proxy for determination of cases when local emission contaminates the air coming to the station. Usually location of the station in high mountain assures large distance from sources of the observed gases. Some tracers connected with human activity like carbon monoxide or sulphur hexafluoride may indicate proximity of anthropogenic sources of N₂O and CH₄, which might substantially change the composition of air surrounding the station.

Valley breezes occur frequently in each mountain area. It has a large influence on air composition measured at the mountain stations. It can be clearly noticed in CH₄ and N₂O records and at much smaller rate in SF₆ concentration as well. Diurnal cycle of methane and nitrous oxide concentrations reflects substantial change of its value usually shortly after the sunrise. During the summer season a valley breeze transports to the station an air enriched in CH₄ and N₂O from the peat lands located along the foothill of Tatra mountains. Additionally nitrous oxide is emitted from arable lands representing almost half of the terrain bordering with Tatra. In case of Kasprowy Wierch methane enhancement may reach even 150 ppb usually in July and August. Average diurnal amplitude remains at 30 ppb. Variations of nitrous oxide concentration remains is usually characterized by amplitude of 3 ppb. Sulphur hexafluoride amplitude remains usually below 1.5 ppt. In winter, mean diurnal amplitude of methane abundance recorded at Kasprowy Wierch decrease to 10 ppb as most of the terrain including peat lands is shielded by a deep snow cover. N₂O reproduces also decreased variations in opposition to SF₆ which tend to represent much stronger fluctuation with impaired diurnal frequency.

Global circulation models doesn't take to account valley breeze wind. This is one of the reasons why model results of trace gas concentration for mountainous sites are incoherent with measurements.

The research leading to these results has received funding from the European Community's Seventh Frame-work Programs (FP7/2007-2013) under grant agreement n° 244122 (GHG-Europe) and n° 284274 (InGOS).