

Biochar application reduces N₂O emission in intensively managed temperate grassland

R. Felber, J. Leifeld, and A. Neftel

Research Station Agroscope Reckenholz-Tänikon ART, Switzerland

Biochar, a pyrolysis product of organic residues, is seen as an amendment for agricultural soils to improve soil fertility, sequester CO₂ and reduce N₂O emissions. Mainly used in highly weathered tropical soils, the interest of using biochar in intensively managed temperate soils is increasing. Our previous laboratory incubations have shown N₂O reduction potentials of between 20 and 100% for temperate soils after biochar application (Felber et al., Biogeosciences Discuss, 2012).

To assess the effect of biochar application under field conditions, a plot experiment (3 control vs. 3 biochar amended plots of 3x3 m size at a rate of 15 t ha⁻¹) was set up in a temperate intensively managed grassland soil. N₂O and CO₂ emissions were quasi-continuously measured by static chambers under standard management practice over 8 months. In parallel soil samples were taken monthly from all plots and their N₂O and CO₂ productions were measured under controlled conditions in the lab.

At the beginning of the field measurements (April 2011) cumulative N₂O fluxes from biochar amended plots were above those of control plots, but the pattern reversed towards reduced fluxes from biochar plots after 3 months and the reduction reached about 15% by the end of 2011. The biochar effect on reducing N₂O emissions in the laboratory was two times that of the field measurements, indicating that results from laboratory experiments are not directly transferable to field conditions. The experiments indicate a substantial N₂O emission reduction potential of biochar in temperate grassland fields.